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An experimental note on finite-amplitude 
standing gravity waves 

By DAVE FULTZ 
Hydrodynamics Laboratory, Department of the Geophysical Sciences, 

University of Chicago 

(Received 19 January, 1962) 

In  a recent paper Tadjbakhsh & Keller (1960) have predicted that two-dimen- 
sional finite standing gravity waves in a, rectangular container will have lower 
frequency than infinitesimal standing waves in deep water but have higher 
frequency below a certain mean depth to wavelength ratio. This is in strong 
contrast to the frequency results for finite progressive waves obtained by many 
investigators. Experimental confirmation of this prediction is reported together 
with estimates of the magnitude of the frequency effects at  several depths. The 
frequency effect reversal appears to occur a t  a depth ratio of 0.14, somewhat less 
than the predicted ratio of 0.17. 

Introduction 
During the 1950’s there has been a great revival of theoretical and experimental 

interest in surface gravity wave motions on the part of scientists in a number of 
different areas of investigation. Among these studies are a large number con- 
cerned with the class of standing gravity waves on bodies of liquid in fixed or 
moving containers (Cooper 1960). This class of fluid wave motions is among the 
earliest to have been thoroughly treated in the approximation of infinitesimal 
motions, e.g. by Merian (1838) for rectangular containers, and in the late 
nineteenth century was quite actively studied especially in connexion with the 
geophysical problem of seiches in lakes and other basins (Fore1 1876; Kirchhoff 
& Hansemann 1880; White & Watson 1905-6). The most careful early experi- 
mental checks for simple shapes (circular and rectangular cylinders) appear to be 
those of Guthrie (1875), Rayleigh (1876), Lechat (1880), and Honda & Matsushita 
(1913). Much of the recent work has been concerned with extending analysis to 
the properties of finite-amplitude waves and the present results fall in this 
group. 

The major point of the present paper will be introduced in a moment but it is 
illuminating first to describe in some detail the precise sequence of events and 
ideas which led to it. This sequence is an excellent example of the complex of 
interactions between so-called basic and so-called applied science; between 
theoretical, experimental, and observational results; between teaching and 
research; and between tactical and strategic advances that occurs in any research 
activity. The delicate nexus of interests and stimuli that operates in the conduct 
of any scientific investigation is familiar to any working scientist but it is not 
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194 Dave Fultz 

often any more that a case is put on the record. In  the present instance, the topic 
is small enough that all the crucial turning points can be set down in a short space 
though they occurred intermittently over several years. 

During the Second World War a group in the Royal Naval Scientific Service 
carried out studies designed to assist in the engineering design of the critical 
Mulberry harbours for the Normandy invasion. One of these was a calculation by 
a Fourier series expansion method carried to fifth-order terms of finite-amplitude 
two-dimensional standing waves in deep water. This calculation was published 
by Penney & Price in 1952 and included a heuristic estimate of the form of the 
probable maximum-amplitude standing wave. This estimate was to the striking 
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FIGURE 1. Diagram from Taylor (1953) of his arrangement for exciting standing waves in 
a tank. Two flap wave generators which are mechanically oscillated in opposition form the 
ends of the working section. 

effect that the maximum wave was a sharp-crested form with a 90" angle in 
contrast to the Stokes (1880) result of a 120" angle for the maximum progressive 
wave (though in ironic coincidence with Rankine's (1865) erroneous deduction, 
which Stokes was concerned to correct, of a 90" angle for such waves). The finite- 
amplitude effect on the frequency was found by Penny & Price to be a decrease 
and, though they did not comment strongly on it, this is in interesting contrast to 
the frequency increase found by Stokes and later workers for finite-amplitude 
progressive waves. The 90O-crest result was met with considerable controversy 
and doubt which led Sir G. Taylor (1953) to undertake an experimental check. 
He arranged a pair of flap wave makers as shown in figure 1 from his paper so as 
to generate the first symmetrical standing mode (two half-wavelengths) between 
the flaps. He found that extremely small synchronous motions of the generator 
flaps were able to generate high amplitude waves when sufficiently close to 
resonance. At small amplitudes of water motion with a depth of 15.5 cm and tank 
length of 32.9cm (i.e. a ratio of 0.471), he was able to check the theoretical 
inviscid period of 0.460sec within one part in 800. For high amplitudes, he 



On Jinite-amplitude standing gravity waves 195 

conclusively confirmed the frequency decrease predicted by Penney & Price and, 
with fair precision, the 90” angle. Beyond the 90O-angle maximum form he found 
spontaneous instabilities and transverse wave motions of the free surface 
setting in. 

The present author became aware in 1954 of these results through Taylor’s 
paper and commented on it to students in a theoretical hydrodynamics course 
in 1955 and 1956. Much later, primarily because of the precision of Taylor’s 
period result at small amplitudes against perfect fluid theory, the author and 
Prof. G. W. Platzman decided to organize a teaching experiment for use in the 
above course and in a course in theoretical meteorology where gravitational fluid 
oscillations were a major theme. We procured in 1959 a rectangular aquarium 
for this purpose, fitted it with a single generator flap instead of two, and devised 
a procedure for class use. After calculation of a selection of theoretical periods, 
the classes determined periods up to the eighth or ninth two-dimensional modes 
at  two or three depths. As a teaching device it turned out to be outstandingly 
effective, the periods agreeing always within a few tenths of a percent and a 
number of qualitative effects being convincingly demonstrated, For example, 
a little floating tracer material enabled the students to form a vivid impression of 
the instantaneous streamlines and of the changes in the rate of decay of the 
motion with depth as the depth-wavelength ratio changes for various modes. 
These experiments were run in April 1959 and March 1961 with some improve- 
ments the second time. 

Meanwhile on the theoretical side, Prof. J. B. Keller and a visiting member, 
Dr I. Tadjbakhsh, of the Institute for Mathematical Sciences at New York 
University, partly stimulated by Penney & Price’s and Taylor’s work and by a 
general interest in free non-linear vibrations in systems with infinitely many 
degrees of freedom, carried out calculations by a different method of the standing 
waves in water of finite depth. They determined velocity potentials, surface 
heights, and frequencies up to second-order terms in expansions with respect to 
an amplitude parameter (Tadjbakhsh & Keller 1960) valid for any value of depth 
to wavelength ratio. The result they uncovered, which struck us, was the pre- 
diction that Penney & Price’s frequency decrease (soft spring effect) would 
reverse to a frequency increase (hard spring effect) below a depth to wavelength 
ratio of 0.17. This is in marked contrast to all finite-amplitude results for pro- 
gressive waves which, to the author’s knowledge, call for the same sense of 
frequency change (increase) in shallow as in deep water. On the occasion of the 
last class experiment (March 1961) we decided in April to use the apparatus to 
check Tadjbakhsh & Keller’s result. This we were able to do conclusively by May, 
and the details of this confirmation are the main result of this paper. During 
preparation of the manuscript we have been apprised by Prof. Keller of Moiseyev’s 
(1958) theoretical discussion in which the frequency increase in shallow water has 
also been obtained. I am not aware of any experimental results other than 
Taylor’s (1953) and Lin & Howard’s (1960), which are for the deep water finite- 
amplitude case, and it therefore appeared worth while to collect our results in 
some detail. 
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Theoretical summary 
The theory of infinitesimal standing waves on a perfect liquid of finite depth in 

a rectangular container is given by Lamb (1932). We restrict ourselves to two- 
dimensional motions with crest lines of the waves transverse to the long axis of 
the tank, and will use a dimensionless notation nearly identical with Tadjbakhsh 
& Keller’s to facilitate comparisons. Only those formulae will be repeated that 
are needed for the experimental results on frequencies and for a couple of com- 
parisons with Tadjbakhsh & Keller’s theoretical expressions for the free-surface 
displacements. Their paper should be consulted for full details. 

Dimensional quantities will be identified by a subscript * and dimensionless 
ratios either by simple symbols following Tadjbakhsh & Keller or by a prime (’) 
where new symbols are needed. Let 

x* denote the horizontal co-ordinate parallel to the long axis of the tank; 
y,, the vertical co-ordinate, positive upward; 
t,, the time; 
y,, the acceleration of gravity; 
A,, the wavelength (along x*); 
k ,  = 27r/A,, the wave-number; 
h,, the mean depth of the fluid; 
L,, the length of the tank; 
T* , the period of a given mode; 

and w* = 3n/~ , ,  the frequency of the mode. 

The corresponding dimensionless quantities are 

x = k ,  x, and y = k ,  y,, 
t = t *w* ,  

F, = k, h,, 

and w = O*(k, g,)-&; 

w is thus a measure of frequency in units of the short-wave frequency on deep 
water. In  addition, v*(x+, t* )  will denote the free surface displacement from the 
mean level y = 0 and a, a measure of wave amplitude which is the amplitude of 
that Fourier component of the wave motion identical in type with the infinitesimal 
mode. The series expansion parameter with respect to which Tadjbakhsh & 
Keller conduct their solution is 

E = k, a,. 

Further, eq = k ,  q4 so that q = q,/a,. Intheexperimentaldatagivenlater, i t  was 
convenient to measure the difference between the maximum and the minimum q, 
at an antinode of the standing waves and to express this in units of A, instead of 
(k,)-l .  We use (AT& for the dimensional quantity and 

for the dimensionless measure. It was not feasible, except in the special cases 
where the free-surface profile was measured, actually to determine a* and B .  
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Instead we used AyL which, however, is quite close to 2a,/h, = €1.. as will be seen 
in the cases checked. 

In a tank of liquid with a given length L,, mean depth h,, and given breadth in 
the z-direction, there is a double infinity of free normal modes of oscillation. These 
correspond to all integer choices for the number of half-wavelengths in both the 
x- and z-directions that enable the boundary conditions at the walls to be satisfied. 
Where necessary to refer to a general mode we will use the notation (j, i) where 
j is the integer number of half-wavelengths in the z-direction and i is the similar 
number in the main x-direction. The two-dimensional modes that were actually 
used were mainly (0 ,2)  with some determinations for (0,4) and ( 0 , l ) .  The depth 
of the fluid will be mainly measured by 

h' =- h,lL,. 

This is identical with h,/h, = h/2n for the most usua,l(O, 2 )  mode and to 2h,/h, 
and &h,/h, for the ( 0 , l )  and (0,4) measurements respectively. 

The classical infinitesimal solution, which is the zero-order solution in 
Tadjbakhsh & Keller's analysis, gives for the free surface displacement 

yo = sin t cos x 

and for the frequency wg = tanh (h) = tanh (I%, h,), 

where the index 0 identifies the order of terms in their expansion. For our usual 
(0,2) mode the tank ends are a t  5 = - 7r and + n. For the experimental measure- 
ments of period (frequency) at various amplitudes, it was convenient to express 
the frequency of the (forced) standing waves as ratios to the frequency of the 
corresponding free infinitesimal mode. For this we use the notation 

f' = w/wo = w,/wo* = rO,/r,. 

Tadjbakhsh & Reller obtain expansions of the following form in powers of 
6 for w and 7: 

= wo + &s2UWz + o(63) 

7 = To($, t )  + €q(x, t) + +€272(x, t)  + 0 ( € 4 ) ,  and 

where w2,  yl, and y2 are the correction functions to the infinitesimal solution. 
They find 

The and y2 functions will not be quoted though they are used in the profile 
calculations given later. y1 consists of two terms in cos 2x and cos 2t cos 2x with 
coefficients which are determined functions of oo while y2 consists of four terms 
in the pairwise products of sin t and sin 3t with cos x and COB 3x and with similar 
coefficient functions of wo. 

The primary result we are investigating is seen from the expression for w2 to 
give a negative w2 (frequency decrease from wo) for large wo or large depth-wave- 
length ratios and a positive w2 (frequency increase) for small wo or small depths. 
The reversal w2 = 0 occurs at wo N" 0.89 which corresponds to h z 1-07. This gives 
a depth to wavelength ratio (i.e. h' for the (0 ,2)  mode) of 0-17,. The theoretical 
curve of w2 against h = 2nh' is given in figure 10. 

w2 = - 1 2 ~ ~ 3  - 3w0 - 2 4 ) .  
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Experimental arrangements and procedure 
The rectangular tank used in the experiments is shown in figure 2, plate 1. 

It was a commercial aquarium of length 119.1, cm, breadth 38.5 cm, and height 
about 40.5 cm. The variations in the first two dimensions between the opposite 
glass walls were only & 0.02 cm and & 0.05 cm respectively. The base is 2.5 cm 
thick so that water heights are less than 38 cm. A 2.6 mm brass plate was rigidly 
pivoted a t  the bottom of the tank in such a position that its front surface was 
6.1 cm from the nearest end and the value of L, was 113.0cm. I n  a manner 
similar to Taylor's (1953) procedure, the side edges of the plate were taped so 
that comparatively little fluid was able to escape past them. 

A bar linkage connected the upper end of the plate to an adjustable-amplitude 
crank driven by an electric motor. The proportions of the linkage were such that 
the deviations of the plate motion from a pure sinusoid were very small for the 
smaller amplitudes used. The actual angular range of motion of the plate was 
varied over quite a large interval to generate various amplitude standing waves. 
The required range of motion varied from 0.0016 to 0.200 radians, being much 
greater for a given wave amplitude at  the lower depths. For all depths except the 
lowest, no more than 0-09 radian was needed to reach maximum waves. At  the 
larger depths, the plate ranges required were somewhat larger than Taylor's 
because only one generator flap was used instead of two. 

The adjustable crank was mounted on the output shaft of a &-h.p. Graham 
variable-speed drive unit. The period variability of this drive was generally less 
than lO-,sec with wave periods of a second or less. With careful observation the 
average period corresponding to a given wave condition could be determined to 
about one or two parts per mil. The period was measured every second or third 
revolution by a Beckman-Berkeley Model 736 1 CKR electronic timer triggered 
by a capacitive detector which sensed a metal projection on the output shaft. The 
accuracy of this measurement (10-Ssec) is so much greater than the motor 
stability that no sensible error occurs due to it. The two prime reasons for the 
easy feasibility of the observations were the convenience and accuracy of the 
time measurement and the stability and continuous variability of the Graham 
drive. 

The liquid used in the tank was tap water a t  near room temperatures of 
16-22 "C. A concentration of lo-, by volume of Kodak Photoflo detergent was 
added to improve the surface behaviour and reduce capillary effects. The surface 
tension value was thence about 30 dyneslcm as against the pure water value of 
about 71 dyneslcm. The depths of water usedin the tank were 22.60,16.95,14-69, 
and 11-30cm corresponding to h' values of 0.20, 0.15, 0.13 and 0.10. For the 
(0 ,2 )  mode the values of h,/h, are the same. Determinations were carried out for 
for the (0,4) mode at h' = 0.20 and for the (0, l )  mode at h' = 0.10 giving h,/h, 
values of 0.40 and 0.05 respectively. The absolute values of the mean depths 
are probably not more precise than ~ f _  0-02-0.03 cm but care was taken to see that 
the depth was constant in each series to & 0.01 cm. The theoretical infinitesimal 
wave periods and frequencies corresponding to these depths and the adopted 
dimensions are given in table 1. 
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As will be seen from later figures, the values of frequency or period extrapolated 
to small amplitudes usually differed from the theoretical values by only 0.2-0.3 yo 
though one or two are as large as 0.5 %. These differences are most likely due to 
absolute depth errors or to slight changes in the effective length of the tank at  the 
moving flap. Both direct viscous and surface tension effects on the infinitesimal- 
wave periods are very small for the dimensions involved here. 

h’ Mode h 

0.20 (0,4) 2.51 
(0 ,2)  1-25, 

0-170 (0,2)  1-07 
0.15 (0,2)  0.94, 
0.13 (0 ,2)  0.81, 
0.115 (0 ,2)  0.70, 
0.10 (0,2)  0.62, 

( 0 , l )  0.31, 

7 * ( 4  
0.605, 
0.923, 
0-958, 
0.992, 
1.037, 

1.140, 
2.181, 

1.082, 

(K* g*Y (s-? 
10.44, 

7.383 
7.383 
7.383 
7.383 
7.383 
7.383 
5.220 

TABLE 1 

0 0  

0.993, 
0.922, 
0-888, 
0.858, 
0.820, 
0.786, 
0.746, 
0.551, 

w2 obs. 

- 0.31 
-0.2,,, -0.2, 
-0.11, -0.09 

- 0.050 
0-07, 

0.30,0*45 
0-5, 0.8 

6.5 

w,  theor. 

- 0 . l l o  
- 0.00, 

0.11, 

1-1, 

- 0.242 

0.34, 
0.64, 

15.7 

The procedure, like Taylor’s (1953)’ and Lin & Howard’s (1960), consisted of 
setting the wave generator to a given range and measuring the equilibrium wave 
heights (crest to trough difference) at  a series of closely spaced frequencies 
(periods) ranging from 5 yo above to 5 yo below the infinitesimal-wave value. This 
procedure was repeated for half a dozen or so wave generator ranges, the highest 
being usually sufficient to reach the unstable maximum-wave forms. The 
oscillator periods, as already mentioned, were measured with more than sufficient 
accuracy but the drive variations introduced the principal problem of deter- 
mining a valid average period a t  an equilibrium condition of the waves simul- 
taneous with the height measurement. The height measurement was always taken 
at  the central antinode of the standing wave except for the ( 0 , l )  mode where it 
was taken at the tank end opposite the generator flap. It was made by visual 
estimate against a millimeter rule placed on the glass front with one index at the 
mean level of the water. When the tank and background were lighted properly the 
bottom of the meniscus appeared as a sharp line whose position could be read to 
within +-lmm depending on the height of the waves (less accurately for high 
amplitudes). 

Experimental results 
The results of these measurements are given in figures 3-9 as curves of A& the 

wave height in units of A, against f ’, the observed frequency in per cent of the 
small-amplitude theoretical frequency. These curves of amp1itude:frequency for 
the forced response of the fluid are similar to those of Taylor (1953) and Lin & 
Howard (1960)’ except that Taylor used the crest height above mean level in 
units of A, and Lin & Howard used a dimensionless crest-trough’ distance for 
which 1.0 corresponds to AT& = (24-l  = 0.15,. 

Using figure 3 as an example, the response curves show the same overlap 
between low- and high-frequency branches of the curve that Taylor found except 
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FIGURE 3. Curves of the total wave amplitude ArA (in units of A )  against frequencyf' (in 
per cent) of the infinitesimal-wave frequency for various ranges of motion of the generator 
flap (given in units of 10-3 radians). Measurements for the (0,4) mode at  h' = 0.20 
(&/A* = 0.40). Curves marked T are transcribed from Taylor (1953) using approximate 
factors from figure 11. The dashed curve is the estimated free-mode frequency-amplitude 
curve and gives an estimated w2 of - 0.3,v.s a theoretical w2 = - 0.24. 

015 

0.10 

AT: 

0.05 

- 

V 200561-2 13 
0 190561-1 8 
+ 040661-3 3 

FIGURE 4. Curves similar to figure 3 for the (0,2) mode at h' = 0.20 (&/A* = 0.20). 
Estimated w2 values - 2,, - 0 . 2 , ~ ~  theoretical w2 = - 0.11. 
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at low amplitudes. Parts of Taylor’s curves for h,/h, = 0-47, (figure 3, Taylor 
1953) have been placed on figure 3 using an approximate conversion from the 
crest height to total wave height ratios given in figure 11. Lin & Howard, in part 
of their investigation, actually computed the forced response of an inviscid liquid 
by an expansion procedure similar to Tadjbakhsh & Keller’s taking approximate 
account of the motion of their flap wave generator. They obtained excellent 
agreement of the computed frequency-amplitude curves with their observations. 
We will not enter into the very difficult questions of the interpretation of these 
curves taking account of the actual forcing and the viscous and capillary effects 
that actually determine them. A complete discussion is beyond any theory that 
has yet been carried through, and Lin & Howard’s results suggest that the latter 
effects are not important for waves generated in the present manner. Instead we 
will assume that a curve drawn in the general manner of the dashed curve in 
figure 3 will approximate the frequency-amplitude behaviour of a strictly free 
standing oscillation in perfect fluid. Such an assumption agrees qualitatively with 
the relation of Lin & Howard’s results for free as against forced response and with 
Penney & Price’s free calculation as against Taylor’s observed curves. 

With the above assumption we can now follow the changes in the estimated 
free-oscillation frequency curve through the series of depths on which we have 
made measurements. On figure 3 a t  h,/h, = 0.40 there is quite close agreement 
with Taylor’s (1953) and Lin & Howard’s (1960) results a t  greater depth ratios. 
In figure 4 a t  h’ = h,/h, = 0.20 the appearance is similar, but close comparison 
shows that the frequency change with amplitude is perceptibly smaller in magni- 
tude. In  figures 5 and 6 a t  h’ = h,/h, = 0.17 and 0.15 the frequency changes are 
much less but are still distinctly in the direction of a decrease up to Ark about 
0.07 or 0.10. h’ = 0.17 was checked, of course, because of its near coincidence with 
Tadjbakhsh & Keller’s predicted reversal value. However, the highest amplitudes 
attained in figure 6 show a very interesting and distinct shift to higher frequencies. 
When we proceed to figure 7 a t  h‘ = h,/h, = 0-13 the frequency change is 
definitely an increase though there is still a faint suggestion of a frequency 
decrease up to Ark about 0.02. 

Figures 5-7 conclusively confirm Tadjbakhsh & Keller’s (1960) and Moiseyev’s 
( 1958) prediction of a frequency increase in shallow water but place the reversal 
fairly distinctly at a lower value than the predicted h,/h, = 0.17,. Figures 7 and 8, 
though not carried to as large amplitudes, exhibit the increase in magnitude of 
the frequency rise as h,/h, is reduced to 0.10 and 0.05. In  addition, curves were 
obtained for h,/h, = 0.115. They lie between the 0.13 and 0.10 values and the 
corresponding o2 estimates appear in figure 10. It will be noted from the angular 
range values for the flap that are given on the figures, that much larger ranges 
were required for a given A&, a t  the shallower depths. This is due to a number of 
causes but probably most importantly to the fact that, in shallow water, a piston- 
type generator instead of a flap is the proper type for coupling to the free modes. 

One further point should be mentioned. Very late in the series of measurements 
it was noticed that some slight play was present in the drive linkages sufficient to 
produce a fraction of a millimetre looseness in the plate drive. It was decided to 
complete the series without changing any of the conditions. At the end, however, 
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I Plate range 
( radian) 

230561-2 and 3 73 - 
0 240561-1 60 
x 220561-1 51 

I Plate range 
radian) 

101061-2 51 
0 101061-1 34 
x 101061-3 25 
V 131061-1 19 
0 111061-2 11 
+ 121061-2 6 

FIGURE 5. Curves similar to  figure 3 for the (0,2) mode a t  h‘ = 0.17 near Tadjbakhsh & 
Keller’s theoretical frequency reversal point. Estimated w2 = - 0.1 1, - 0.09 218 theoretical 
wz = 0. The change of trend of the free frequency-amplitude curve from figure 3 is very 
distinct by now. 
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0.15 I- 
010 I- 

! 

I Plare range 
( 1 0-3 radian) 

010661-2 95 -1 010661-1 73 
x 290561-1 51 

FIQURE 7. Curves similar to figure 3 for the (0,2) mode at  h’ = 0.13. By now at the higher 
amplitudes the dashed curve definitely trends toward higher frequency but the two lowest 
response curves in the original data, though the maxima are flat, show a fairly definite shift 
toward lower frequency. Estimated w, from the upper portion of the dashed curve + 0.07, v8 
theoretical w,  = + 0.36. 
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110561-1 162 
0 090561-2 101 
X 090561-1 52 
v 260661-1 25 

I 

f’ (%) 
FIGURE 8. Curves similar to figure 3 for the (0,2) mode at  h‘ = 0.10. The shift to high 
frequency is now unmistakable even though the lowest response curve is very flat. The 
dashed portion of the topmost response curve is a zone where the standing wave was quite 
unstable and not regularly periodic. Estimated o, values + 0.5,0.8 ws theoretical o, = 1.20. 
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the pivot points were reworked to produce no noticeable play. One critical curve 
was rechecked with the result that the peak point was unaltered but the curve was 
slightly narrower, amplitudes being slightly lower on either side of the maximum. 
We do not believe, within the general accuracy described later, that any serious 
alterations in results would arise from this correction. Probably some of the 
disturbance harmonics in later profiles would have been less prominent. 

( 1 0-3 radian) 
260561-2 200 
280561-1 159 

x 280561-2 73 
I I v 280561-3 48 I 

f ’  (%) 
FIGURE 9. Curves similar to figure 3 for the (0 , l )  mode at  h‘ = O*lO(h,/h, = 0.05). Here the 
generator flap motions required were so large that the unstable maximum wave could not be 
reached. Note that the As6 scale has changed, the waves are very flat, and the frequency 
effect very large. Estimated w g  value 6-5 us theoretical w z  = 15.7. 

We have made an attempt to estimate experimental values of the coefficient 
w2 in the expansion for frequency from figures 3 to 9 and a few data that have not 
been given. Such an estimate is made uncertain by the fact that the relation 
between (AT,)* and Tadjbakhsh & Keller’s amplitude parameters a, and E has 
been determined only in the few cases where we have measured the surface profile 
and determined its Fourier representation. In  these cases, considered in the next 
section, a, is the dimensional amplitude of the lowest harmonic in x. 

We will consider the complications below, but as an approximation decided to 
calculate w2 treating (Avm)* as equal to 3a*, the linear solution value. This 
implies A&, = E / T .  In  any case, to the order of Tadjbakhsh & Keller’s calcula- 
tion, the free-mode curve is a parabola on the frequency-amplitude diagrams of 
figures 3-9. The type of behaviour on figure 6 suggests that a parabola should not 
be fitted up to too-large values of A& but, since the accuracy with which the free 
frequency curves are defined is not too high, we were forced to take a fairly large 
interval. There was also the problem of the few tenthsper cent differences between 
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the limiting small-amplitude trend of the dashed curves in figures 3-9 and 
the 100% f ’ va1ue.t The values of w2 in figure 10 were finally obtained by 
calculation from the frequency difference using two points on the dashed 
curves: those at  A&, = 0 and at  either 0.10,0.05, or 0.015 in the case of figure 9. 
In  some cases, values from both 0.10 and 0-05 are given in table 1 and figure 10. 
Tadjbakhsh & Keller’s limiting value for deep water is w2 = 0.25 and this is 

h z  27rh’ 

FIGURE 10. Theoretical and estimated observed curves of w2 versus depth h 27rh’. 

in quite close agreement with both Taylor’s observations and some of Lin & 
Howard’s results. In  general, figure 9 shows that the estimated values lie 
systematically below the theoretical w2’s;  hardly by a significant amount in the 
deepest case but increasingly toward the shallow end. In particular, the w2 = 0 
value is rather sharply fixed by the observed cases at  a value very near h’ = 0.14 
(h  = 0.88) where the theoretical value is w2 = f0.2. One cannot give so much 
weight to the w2 values for the two lowest depths but the differences still seem 
large enough to be real. It is hardly possible to give a realistic estimate of the 
precision of these we measurements but, aside from the problem of the difference 
between (A?,), and 2a,, & 30-50 yo is probably conservative. 

Purely to facilitate comparisons with data such as Taylor’s (1953) in which the 
crest height above mean level is used, figure 11 gives a collection of observations 
of the ratio of crest height 7; (units of A,) to the wave height A&, plotted against 

t In  passing it is interesting to note, as a close inspection of the data points in figures 3-9 
shows, that detectable frequency changes of 0.2-0.5 yo occur on the low-amplitude curves 
with total wave heights of as little as 0.02-0.04 of A,. 
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A& itself. These observations are very inaccurate below AqL - 0.05 (to left of 
the wavy line) but above that value are fairly reliable. The indicated rise in this 
ratio for h,jh, = 0.20 near AT,$, = 0.025 was fairly consistent but no obvious 
explanation is apparent. It is also interesting and probably significant that at the 
more reliable wave heights the ratio of crest to wave height is a minimum near 
&/A, = 0.15 where the frequency effect reverses and is greater for both smaller 
and larger depths. 

“*r--y7 

1 1 1  
0.025 005 0.( 0.400 0.400 A 0.025 005 0.( 

5 0.10 0 

AT:, 

I . h’=010 (0,2)mode 
+ h’=0115 (0,2) mode 
1 h’=0.13 (0,2) mode 
0 h’=0.15 (0,2)mode 
0 h=Q17 (0,2) mode 
v h’ =020 (0,2) mode 

5 015 

FIGURE 11. Curves of the ratio of crest height to wave height q,/(A?lrn)* against A& for 
various depths. There is a large scatter of the observed points below Aq: about 0.05 between 
ratios of 0-50 and 0.60. The measurements are not sufficiently precise to say whether the 
indicated humped curves are real. At larger wave heights, the ratio measurements are fairly 
consistent and indicate an interesting minimum of the ratio near h,/h, = 0.15. 

Before proceeding to the next section, in which the details of the wave profiles 
will be discussed briefly, it  is interesting to consider some aspects of the free-mode 
amplitude-frequency curves as they have been sketched in figures 3-9. Taken at 
their face value, for moderate wave heights (say 0.05-0.10) where the measure- 
ments are conclusive, they show the frequency effect reversal near & / A ,  = 0.14 
that has already been described. The difference from Tadjbakhsh & Keller’s 
prediction must either be correct or be produced by some such failures to produce 
correct finite-amplitude free modes as are discussed below in connexion with the 
wave profiles. If correct and if Tadjbakhsh & Keller’s calculation is assumed 
correct as far as they carry it, then the following appears necessary: in the range 
of between say 0.18 and 0.12, Tadjbakhsh & Keller’s calculation can be 
accurate in predicting the frequency change precisely (say to 0.05 %) only up to 
very low A& values of 0.01-0-02 and the rest of the free-mode frequency-ampli- 
tude curves must depend on higher order terms. At such low A& values, the 
experimental estimates certainly are not sufficiently precise to rule out such a 
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I 
T. and K. theoretical 

X 

FIUURE 13. Measured surface profile height in A, units of the photograph in figure 12a 
(plate 1). Observed profile (dashed curve), theoretical profile (full curve), and cosine curve 
with amplitude a' (dash-dot curve). Compare Fourier coefficients in table 2. 

004 

002 

7' 0 

-002 

-0.04 

- T. and K. /heoretical 
.___.. Experimental 

u' sin t cos x profile 

,---.. 

.. -. ./' '. 

X 

FIGURE 15. Measured surface profile height in A, units of the photograph in figure 14c 
(plate 2). Observed profile (dashed curve), theoretical profile (full curve), and cosine curve 
with amplitude a' (dash-dot curve). Compare Fourier coefficients in table 2. 
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possibility. On figures 6 and 7, at h,/h, = 0-15 and 0.13 respectively, for example, 
this would mean that the free frequency-amplitude curve first should trend to 
the right in accordance with the theoretical o2 but then trend to the left and 
finally to the right as amplitude increases. At least at  some depths, this would 
produce two finite amplitudes having zero frequency change from the infini- 
tesimal wave value. It would certainly be valuable for the calculations to be 
carried to one or two higher orders than Tadjbakhsh & Keller have done in order 
to see whether such results appear theoretically. 

Wave profiles 
Figure 13,plate 1, andfigure 14, plate 2,givephotographsofthewaveprofilesfor 

(0, 2) inodes which, even though for various accidental reasons we did not obtain 
photographs of as pure standing modes as many involved in the previous measure- 
ments, illustrate some interesting points for moderate (&/A, = 0.20) and low 
(h,/A, = 0.10) depths. The photographs given are selected from a series of high- 
speed flash photographs taken for short intervals of time at  repetition rates of 
about 5-6 per see so that several photos are obtained per wave period. A reason- 
ably precise transparent grid with blocks 1Ocm on a side was fastened to the 
front of the tank. On five negatives, two of which are included in these figures, 
comparator measurements of the wave profile T,I* were made at  thirty-six 
x-stations by a differencing procedure against the grid lines as references. 
A Fourier analysis with respect to cos nx and sin nx of these measurements was 
then carried out on a Univac I computer using a programme originally prepared 
for meteorological-type data by R. E. Kaylor. 

It was possible by careful comparison of the & sec timer readings appearing 
in the photos with the wave shapes to assign a time origin and conversion to 
Tadjbakhsh & Keller's dimensionless t. We measure an equivalent time in angular 
degrees which at  the extreme crest position at  the tank centre when the water is 
instantaneously stationary has the value 90". From the Fourier analysis it was 
then possible to derive a value of a, or a' = a,/& corresponding to Tadjbakhsh & 
Keller's amplitude parameter and to compute the theoretical profile for the 

EXPLANATION OF PLATE 1 

FIGURE 2 (plate 1).  Photograph of the aquarium used for the measurements. The generator 
flap pivoted at the bottom is seen just to the right of the front left corner of the tank. The 
Graham motor, adjustable crank, and linkage are in the left foreground. The Beckman 
electronic timer is in the rack in the background. 

FIGURE 12a (plate 1 ) .  High-speed flash photograph (080661-2-14) of (0 ,2)  mode in the tank 
a t  time t z 90" with mean depth h,/h, = 0.20. Conditions: oscillator period = 0.935sec, 
f' = 0.988, Aq: N 0.07,, plate range = 0.024 radians, photograph on Kodak Plus-X Pan 
35 mm film, camera Robot Royal 111, 30 mm lens atf/ l  I, lens a t  mean water level and 69 in. 
from front of tank, flash tubes nominal 56 Ws total. 

FIGURE 12b (plate 1). High-speed flash photograph (080661-2-15) of (0 ,2)  mode at time 
t x 171", 0.21 sec after figure 12a. Note thedistinct flatteningofthecentral crest. Conditions 
as figure 12a. 

FIGURE 12c (plate 1).  High-speed flash photograph (080661-2-17) of (0,2) mode at time 
t w 321", 0.39sec after figure 12b. Conditions as figure 12a. 
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photograph time. Values of the theoretical and observed Fourier components are 
given in table 2 and comparisons of the profile curves for the photos in figure 12a, 
plate 1, and figure 14c, plate 2, are given in figures 13 and 15. All the amplitudes 
are measured in units of (i.e. one unit is slightly over 1 mm.). The theo- 
retical cosine amplitudes given were obtained by fitting the zero-order term in 

A d  a' 
Photo ( units) ( units) 

080661-2-14, 73 34.2 
h' = 0.20, 
t = 90" 

090661-5-35, 94 38.2 
h' = 0.13, 
t = 111O 15' 

090661-%30, 94 41.9 
h' = 0.13 
t = 96"24' 

090661-5-38, 94 40 
h' = 0-13, 
t = 352'32' 

090661-4-19, 100-115t 36.2 
h' = 0.10, 
t = 197'50' 

71 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

Obs. Theor. 
cosine cosine 
coeff 's. coeff 's. 

( units) ( units) 

34.2 34.2 + 0-3 
4.1 9.7 
1.7 1.5 
0.7 
0.4 - 
0-4 

- 

- 

35.9 35.9 + 0.6 
7.0 9-8 
2.6 2.1 
2.1 - 
1.0 
0.1 - 

- 

41.5 41.5+ 0.5 
13.0 14.1 
5.5 2.7 
2.7 - 
0.2 - 
0.6 - 

- 5.2 - 5.2-0.3 
- 7.7 - 7.4 

3-2 - 0.4 
- 0.3 
- 0.4 

- 
- 

1.4 - 
- 11.1 - 11.1-0.5 
- 8.8 - 2.8 

1.8 - 0.7 
0.9 

- 0.6 
0.2 

- 
- 
- 

t Very uncertain. 

TABLE 2 

Obs. 
sine 

coeff '5. 
(10-3 units) 

1.6 
- 0.1 

0.6 
0.3 
0.2 
0-4 

1.3 
0-4 

- 0.5 
- 0.4 
- 0.6 
- 0.9 

0.8 
- 0.8 
- 0.1 

0.1 
- 0.6 
- 0.1 

- 0.9 
- 1.1 
- 0.5 
- 0.1 

0.2 
- 0.1 

1.2 
4.7 

- 1.7 
1.1 

- 1.1 
0.5 

Tadjbakhsh & Keller's expansion, allowing for the time factor, to the observed 
n = 1 coefficient. The added fraction for n = 1 arises from a second-order term in 
cos z in the theoretical profiles. 

On the question referred to earlier of the differences between A!&, and 2a,/h, 
which affect the experimental estimates of w2, the last two photographs in table 3 
are not much help because the fundamental sin t cos 2 has a small sin t value and 
the values o f t  are not sufficiently accurate to calculate reasonably accurately 
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back t o  a,. But the first three near t = 90" or +rr (i.e. at  maximum crest height) 
and with relatively large wave heights give some indication. A& is greater than 
2a,/h, (by an amount that clearly must be larger the larger the wave height) and 
these three photos give excesses of the order of 10-20 %. The effect on the w2 
values in figure 10 or table 1 would be to increase the magnitudes regardless of 
sign by amounts, if anything, less than 20-40 % (depending on the weight of the 
lower amplitudes in determining the free-mode frequency-amplitude curves). 
On figure 10 this would tend to rotate the curve for the observed estimate 
clockwise. 

One of the features of Penney & Price's (1952) and of the later non-linear 
analyses of standing waves is that, while there are times ( t  = +n,$rr) when the 
disturbance velocity field identically vanishes and the disturbed surface height is 
an extremum, there are no times when the height disturbance is identically zero. 
The cos 2x and cos 3x harmonics in 71 and y2 occur multiplied by sinusoidal time 
functions with phase differences so that all the latter do not vanish a t  once. These 
conclusions are found valid experimentally for all wave heights AyA above quite 
low values (0-03-0.05). One notices, for example, the time phase differences for 
larger wave heights, when the main (0,2) crest is falling, in a flattening at the 
antinode (figure 12b, plate 1) so that two relative crests occur due to time lag of 
the higher harmonics in reaching their maxima. Thus in contrast to the infini- 
tesimal waves where the wave shape is self-similar in time, the finite waves vary 
their shape periodically. 

Also in agreement with Tadjbakhsh & Keller's results is the general observation 
that for low depths such as h,/& = 0.15,0.13 and 0.10, the higher harmonics are 
more prominent and even produce extra crests in the total wave profile at  some 
phase times. Figure 14c, plate 2, at an h,/& = 0.10 is an example with a strong 
double peak a t  a time t of 197" 50'. In  fact in this case the observed impression, 
through most of a wave period, is that these extra crests are identifiable as 
progressive waves proceeding from centre to ends and back. They disappear as 
identifiable crests only near the times t = 4;. and $ 7 ~  of instantaneous rest. 

Inspection of table 2 or of almost any of the photographs shows systematic 
asymmetric (sin nx )  modes to be present. This is, for example, clear for figure 14c, 
plate 2, in the sine coefficients and in an easily noticeable presence of the ( 0 , l )  
sloshing mode. This tendency was the most difficult to keep in bounds at the 
lowest depth h' = 0.10 but most of the frequency measurements were made in 
conditions better than figure 14c, plate 2 .  Part of the reason is the single generator 
flap and the fact that a piston generator would have been better in shallow water. 
We had the definite impression, for example, for the (0,2) modes that the purest 
and stablest were those for h,/& = 0.17 probably as a result of a best fit in some 
sense of the flap motion to the free mode. As far as the cosine coefficients are 
concerned, n = 1 has been used to fit a,/& to the theory but the n = 2 and 3 
coefficients show what appear to be systematic differences from the theoretical 
values. For the first three photos in table 2, a fair test should be possible. (Almost 
all the coefficients for n = 4 to 6 are non-significant.) 

Whether or not these Fourier coefficient differences are significant and whether 
the extraneous harmonic content of the forced waves is having significant effects 
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is a question of principle that affects any attempt to push these measurements as 
far as possible or to evaluate the degree of confidence to be placed in the w2 
estimates. It is possible that the cosine coefficient results in table 2 are real, 
roughly correct, and presage differences that would be found to arise in carrying 
Tadjbakhsh & Keller’s calculations to higher order. They could, however, also be 
due to failure to produce strictly free modes, the forced ones having a significantly 
different harmonic content and perhaps this could account for the w2 values 
differing systematically from the theoretical ones. A t  present, only a substantial 
further theoretical and experimental investigation appears capable of firmly 
resolving these points. 

Conclusions and acknowledgments 
No matter what reservations may be entered, I believe that these data con- 

clusively confirm Tadjbakhsh & Keller’s prediction of a frequency reversal in 
finite standing waves at  approximately the depth they expect. The deviations 
from expectation in the w2 estimates and waves profiles are reasonably internally 
consistent and are certainly there for the experimental conditions, but whether 
they suggest correct conclusions for strictly free modes is certainly open to 
question. 

This question and others mentioned earlier as to the frequency behaviour of the 
finite-amplitude modes as a function of amplitude would certainly appear to 
merit closer investigation. From the theoretical side, a calculation of the forced 
modes along the lines of Lin & Howard (1960) or Ursell, Dean & Yu (1960) to at  
least one higher order than Tadjbakhsh & Keller’s series would be needed. One 
would also probably need to pay some attention to viscous and surface tension 
effects as have Keulegan (1959) and Case & Parkinson (1957) in order to interpret 
experimental results to the necessary precision. From the experimental side, it  
would be somewhat difficult but perfectly feasible to push the measurement of 
mode frequencies to 10-4 accuracy with careful choice of the generating 
mechanism. It would then be quite feasible to photograph wave profiles, deter- 
mine a* and the space Fourier coefticients, and determine the time behaviour of 
the lowest harmonics with sufficient accuracy to form a critical test of the series 
solutions for the wave profiles. If continuous height measurements in time were 
made at  several points, the Fourier spectrum in time could be determined with 
high accuracy and conclusions concerning the space spectrum drawn. 

It would also be illuminating to have a clear physical and/or formal model for 
the source of the frequency-effect difference between progressive and standing 
waves. Should one expect similar results for most types of non-linear wave 
motions of a gravitational character that are met with in geophysical contexts? 

I have already indicated in an earlier section the manner of origin of the work 
reported here. I should like to repeat an acknowledgment of many discussions 
with Prof. G. W. Platzman, of the stimulation and questions provided by the 
students in the courses mentioned earlier, and of assistance and discussions with 
R. E. Kaylor in the design and arrangement of the apparatus and class experi- 
ments. T. S. Murty has carried out with great care most of the frequency- 
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amplitude determinations and the detailed calculations. S. Nawrot has kept the 
apparatus in operating shape, Mrs Della Friedlander bas done the drafting, and 
G. W. Gray and P. Gardiner the photographic prints. 
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